Эра Звезд Wiki
Advertisement

Коме́та Галле́я (официальное название 1P/Halley) — яркая короткопериодическая комета, возвращающаяся к Солнцу каждые 75—76 лет. Является первой кометой, для которой определили эллиптическую орбиту и установили периодичность возвращений. Названа в честь английского астронома Эдмунда Галлея. С кометой связаны метеорные потоки эта-Аквариды и Ориониды. Несмотря на то, что каждый век появляется много более ярких долгопериодических комет, комета Галлея — единственная короткопериодическая комета, хорошо видимая невооружённым глазом. Начиная с древнейших наблюдений, зафиксированных в исторических источниках Китая и Вавилона, было отмечено по меньшей мере 30 появлений кометы. Первое достоверно идентифицируемое наблюдение кометы Галлея относится к 240 году до н. э. Последнее прохождение кометы через перигелий было 9 февраля 1986 года в созвездии Водолея; следующее ожидается 28 июля 2061 года, а затем — 27 марта 2134 года[1].

Во время появления 1986 года комета Галлея стала первой кометой, исследованной с помощью космических аппаратов, в том числе советскими аппаратами «Вега‑1» и «Вега‑2», которые предоставили данные о структуре кометного ядра и механизмах образования комы и хвоста кометы.

Открытие кометы Галлея[]

Комета Галлея стала первой кометой с доказанной периодичностью. В европейской науке вплоть до эпохи Возрождения доминировал взгляд Аристотеля, полагавшего, что кометы являются возмущениями в атмосфере Земли. Однако и до, и после Аристотеля многими античными философами высказывались весьма прозорливые гипотезы о природе комет. Так, по словам самого Аристотеля, Гиппократ Хиосский (V в. до н. э.) и его ученик Эсхил считали, что «хвост не принадлежит самой комете, но она иногда приобретает его, блуждая в пространстве, потому что наш зрительный луч, отражаясь от влаги, увлекаемой за кометой, достигает Солнца. Комета в отличие от других звёзд появляется через очень большие промежутки времени, потому, дескать, что она отстаёт [от Солнца] чрезвычайно медленно, так что, когда она появляется вновь в том же самом месте, ею проделан уже полный оборот». В этом высказывании можно увидеть утверждение о космической природе комет, периодичности её движения и даже о физической природе кометного хвоста, на котором рассеивается солнечный свет, и который, как показали современные исследования, действительно в значительной степени состоит из газообразной воды. Сенека (I в. н. э.) не только говорит о космическом происхождении комет, но и предлагает способ доказательства периодичности их движения, реализованный Галлеем: «Необходимо, однако, чтобы были собраны сведения о всех прежних появлениях комет; ибо из-за редкости их появления до сих пор невозможно установить их орбиты; выяснить, соблюдают ли они очерёдность и появляются ли точно в свой день в строгом порядке».

Идея Аристотеля была опровергнута Тихо Браге, который показал отсутствие у кометы 1577 года параллакса (проведя измерения положения кометы в Дании и в Праге). При его точности измерений это означало, что она находится, по крайней мере, вчетверо дальше, чем Луна. Однако сохранялась неопределённость в вопросе о том, обращаются ли кометы вокруг Солнца или просто пролетают по прямым путям через Солнечную систему.

В 1680—1681 годах 24-летний Галлей наблюдал яркую комету (C/1680 V1, называемую часто кометой Ньютона), которая сначала приближалась к Солнцу, а потом удалялась от него, что противоречило представлению о прямолинейном движении. Исследуя этот вопрос, Галлей понял, что центростремительная сила, действующая на комету со стороны Солнца, должна убывать обратно пропорционально квадрату расстояния. В 1682, в год очередного появления кометы, названной впоследствии его именем, Галлей обратился к Роберту Гуку с вопросом — по какой кривой будет двигаться тело под действием такой силы, но не получил ответа, хотя Гук и намекнул, что ответ ему известен. Галлей отправился в Кембридж к Исааку Ньютону, который сразу же ответил, что, согласно его вычислениям, движение будет происходить по эллипсу. Ньютон продолжал работать над проблемой движения тел под действием сил тяготения, уточняя и развивая расчёты, и в конце 1684 года послал Галлею свой трактат «Движение тел по орбите» (лат. De Motu Corporum in Gyrum). Восхищённый Галлей доложил о результатах Ньютона на заседании Лондонского королевского общества 10 декабря 1684 года и испросил у Ньютона разрешения напечатать трактат. Ньютон согласился и обещал прислать продолжение. В 1686 году по просьбе Галлея Ньютон переслал первые две части своего расширенного трактата, получившего название «Математические начала натуральной философии», в Лондонское королевское общество, где Гук вызвал скандал, заявив о своём приоритете, но не был поддержан коллегами. В 1687 году на деньги Галлея тиражом 120 экземпляров самый знаменитый трактат Ньютона был напечатан. Таким образом, интерес к кометам заложил основы современной математической физики. В своём классическом трактате Ньютон сформулировал законы гравитации и движения. Однако его работа над теорией движения комет ещё не была закончена. Хотя он подозревал, что две кометы, которые наблюдались в 1680 и 1681 годах (и которые вызвали интерес Галлея), были на самом деле одной кометой до и после прохождения вблизи Солнца, он не смог полностью описать её движение в рамках своей модели. Это удалось его другу и издателю Галлею, который в работе 1705 года «Обзор кометной астрономии» (лат. Synopsis Astronomiae Cometicae) использовал законы Ньютона для учёта гравитационного влияния на кометы Юпитера и Сатурна.

После изучения исторических записей Галлей составил первый каталог элементов орбит комет и обратил внимание на совпадение путей комет 1531 (наблюдавшаяся Апианом), 1607 (наблюдавшаяся Кеплером) и 1682 гг. (которую наблюдал он сам), и предположил, что это одна и та же комета, обращающаяся вокруг Солнца с периодом 75—76 лет. На основании обнаруженного периода и с учётом грубых приближений воздействия больших планет, он предсказал возвращение этой кометы в 1758 году.

Предсказание Галлея подтвердилось, хотя комету не могли обнаружить до 25 декабря 1758 года, когда её заметил немецкий крестьянин и астроном-любитель И. Палич. Через перигелий комета прошла лишь 13 марта 1759 года, поскольку возмущения, вызванные притяжением Юпитера и Сатурна, привели к задержке на 618 дней. За два месяца до нового появления кометы это запаздывание было предвычислено А. Клеро, которому помогали в вычислениях Ж. Лаланд и мадам Н.-Р. Лепот. Погрешность расчётов составила всего 31 день. Галлей не дожил до возвращения кометы, он умер в 1742 году. Подтверждение возвращения комет было первой демонстрацией того, что не только планеты могут обращаться вокруг Солнца. Это стало первым успешным подтверждением небесной механики Ньютона и ясной демонстрацией её предсказательной силы. В честь Галлея комету впервые назвал французский астроном Н. Лакайль в 1759 году.

Параметры орбиты[]

Период обращения кометы Галлея за последние три столетия составлял от 75 до 76 лет, однако за всё время наблюдения с 240 г. до н. э. он изменялся в более широких пределах — от 74 до 79 лет. Вариации периода и орбитальных элементов связаны с гравитационным влиянием больших планет, мимо которых пролетает комета. Комета обращается по сильно вытянутой эллиптической орбите с эксцентриситетом 0,967 (0 соответствует идеальной окружности, 1 — движению по параболической траектории). При её последнем возвращении имела в перигелии расстояние до Солнца равное 0,587 а. е. (между Меркурием и Венерой) и расстояние в афелии более 35 а. е. (почти как у Плутона). Орбита кометы наклонена к плоскости эклиптики на 162,5° (то есть, в отличие от большинства тел солнечной системы, она движется в направлении, противоположном движению планет, и её орбита наклонена к орбите Земли на 180−162,5=17,5°). Этот факт оказал влияние на выбор даты и места встречи с кометой космических аппаратов во время её возвращения в 1986 году. Перигелий кометы приподнят над плоскостью эклиптики на 0,17 а. е. Вследствие большого эксцентриситета орбиты скорость кометы Галлея по отношению к Земле является одной из самых больших среди всех тел Солнечной системы. В 1910 году при пролёте мимо нашей планеты она составила 70,56 км/с (254016 км/ч). Поскольку орбита кометы сближается с земной орбитой в двух точках (см. анимированный рисунок), порождаемая кометой Галлея пыль образует два наблюдаемых на Земле метеорных потока: эта-Аквариды в начале мая и Ориониды в конце октября.

Комета Галлея классифицируется как периодическая или короткопериодическая комета, то есть такая, период обращения которой меньше 200 лет. Кометы с периодом обращения более 200 лет называются долгопериодическими. Короткопериодические кометы имеют в основном малое наклонение орбиты к эклиптике (порядка 10 градусов) и период обращения порядка 10 лет, поэтому орбита кометы Галлея несколько нетипична. Короткопериодические кометы с орбитальным периодом обращения менее 20 лет и наклонением орбиты 20—30 градусов или менее называются семейством комет Юпитера. Кометы, орбитальный период обращения которых, как у кометы Галлея, составляет от 20 до 200 лет, а наклонение орбиты — от нуля до более 90 градусов, называются кометами галлеевского типа. На сегодняшний день известно только 54 кометы галлеевского типа, в то время как число идентифицированных комет семейства Юпитера составляет около 400.

Предполагается, что кометы галлеевского типа изначально были долгопериодическими кометами, орбиты которых изменились под влиянием гравитационного притяжения планет-гигантов. Если комета Галлея прежде была долгопериодической кометой, то она скорее всего происходит из облака Оорта — сферы, состоящей из кометных тел, окружающей Солнце на расстоянии 20 000—50 000 а. е. В то же время семейство комет Юпитера, как считается, происходит из пояса Койпера — плоского диска малых тел на расстоянии от Солнца между 30 а. е. (орбита Нептуна) и 50 а. е. Предлагалась и другая точка зрения на происхождение комет галлеевского типа. В 2008 году был открыт новый транснептуновый объект с ретроградной орбитой, аналогичной орбите кометы Галлея, который получил обозначение 2008 KV42. Его перигелий располагается на расстоянии 20 а. е. от Солнца (соответствует расстоянию до Урана), афелий — на расстоянии 70 а. е. (превосходит удвоенное расстояние до Нептуна). Этот объект может быть членом нового семейства малых тел Солнечной системы, которое может служить источником комет галлеевского типа.

Результаты численного моделирования показывают, что комета Галлея находится на нынешней орбите от 16 000 до 200 000 лет, хотя точное численное интегрирование орбиты невозможно из-за появления неустойчивостей, связанных с возмущением планет на интервале более чем несколько десятков оборотов. На движение кометы также существенно влияют негравитационные эффекты, поскольку при приближении к Солнцу она испускает сублимирующиеся с поверхности струи газа, приводящие к реактивной отдаче и изменению орбиты. Эти изменения орбиты могут вызывать отклонения во времени прохождения через перигелий до четырёх дней.

В 1989 году Чириков и Вечеславов, проанализировав результаты расчётов 46 появлений кометы Галлея, показали, что на больших масштабах времени динамика кометы является хаотичной и непредсказуемой. При этом на масштабах времени порядка сотен тысяч и миллионов лет поведение кометы можно описать в рамках теории динамического хаоса. Этот же подход позволяет получать простые приблизительные оценки времени ближайших прохождений кометы через перигелий.

Предполагаемое время жизни кометы Галлея может составлять порядка 10 миллионов лет. Последние исследования показывают, что она испарится или распадётся на две через несколько десятков тысячелетий, либо будет выброшена из Солнечной системы через несколько сотен тысяч лет. За последние 2000—3000 возвращений ядро кометы Галлея уменьшилось в массе на 80—90 %.

Расчёты прошлых и будущих появлений кометы Галлея[править | править код][]

История исследований орбиты кометы Галлея неразрывно связана с развитием вычислительных методов в математике и небесной механике.

В 1705 году Галлей опубликовал параболические орбитальные элементы для 24 хорошо наблюдавшихся комет:

Он заметил схожесть орбит комет 1682 года, 1607 года и 1531 года и опубликовал первое верное предсказание возвращения кометы.

Элементы орбит комет 1531, 1607 и 1682 гг., полученные Галлеем
Прохождение перигелия Наклонение Долгота узла Долгота перигелия Перигелий, а. е.
26.08.1531 162°18′ 50°48′ 301°36′ 0,58
27.10.1607 162°58′ 50°21′ 302°16′ 0,58
15.09.1682 162°24′ 49°25′ 301°39′ 0,57

Всё с той же периодической кометой Галлей отождествил и комету 1456 года, двигавшуюся между Землёй и Солнцем ретроградным образом, хотя из-за недостатка наблюдений он и не смог для этого появления определить параметры орбиты. Эти идентификации позволили предсказать новое появление той же кометы в 1758 году, через 76 лет после последнего появления. Комета действительно вернулась, и была обнаружена Паличем в Рождество 25 декабря 1758 года. Ещё более точное предсказание времени этого возвращения кометы сделал Клеро с помощниками, рассчитавший возмущение, вызываемое в движении кометы Юпитером и Сатурном (Уран, Нептун и Плутон ещё не были открыты). Он определил, что момент прохода через перигелий приходится на 13 апреля с оценённой погрешностью в один месяц (ошибка действительно составила месяц, поскольку комета прошла перигелий 12 марта). Хорошие предсказания следующего возвращения 1835 года были даны Дамуазо и Понтекуланом, при этом впервые была рассчитана эфемерида, то есть будущий путь кометы среди звёзд, но точнее всего, с ошибкой лишь в 4 дня, предсказал возвращение кометы Розенбергер, для этого ему пришлось учесть и возмущение новооткрытого Урана. Появление кометы 1910 года, уже методом численного интегрирования точно предсказали Кауэлл и Кроммелин.

Идентификацию кометы 1456 года на основании обнаруженных дополнительных наблюдений смог подтвердить Пингре (1783—1784 годы). Обратившись к наблюдениям, зафиксированным в китайских хрониках, Пингре среди прочих также рассчитал приблизительные орбиты великой кометы 837 года и первой кометы 1301 года, но не опознал в обеих комету Галлея.

Ж.-Б. Био в 1843 году, уже зная средний период кометы Галлея, откладывая его назад в прошлое, попытался идентифицировать предыдущие появления кометы Галлея среди зафиксированных китайских наблюдений после 65 года до н. э. Во многих случаях он предложил несколько возможных кандидатов. На основании похожести орбит Био смог также идентифицировать как комету Галлея комету 989 года. Используя китайские данные Био, Лагер (1843) распознал комету Галлея в осенней комете 1378 года, сравнив с описаниями рассчитанный на основании известных элементов орбиты видимый путь кометы на небе. Аналогичным образом им были выявлены наблюдения кометы Галлея в 760, 451 и 1301 годах.

В 1850 году Дж. Хинд попытался найти прошлые появления кометы Галлея в европейских и китайских хрониках ранее 1301 года, как и Био, опираясь на приблизительный интервал между возвращениями около 76,5 года, но проверяя соответствие наблюдений известным орбитальным элементам. Из 18 его идентификаций до 11 года до н. э. больше половины (1223, 912, 837, 603, 373 и 11 год до н. э.) оказались, однако, ошибочны.

Доказательная связь всех появлений возможна лишь при прослеживании непрерывных изменений орбиты кометы под действием возмущений планет солнечной системы в прошлом, как это делалось при предсказании новых появлений. Такой подход впервые применили Кауэлл и Э. К. Д. Кроммелин (1907), используя приближённое интегрирование уравнения движения назад во времени, методом варьирования элементов. Взяв за основу достоверные наблюдения с 1531 по 1910 год, они предположили, что эксцентриситет орбиты и её наклонение остаются постоянными, а расстояние перигелия и долгота восходящего узла непрерывно меняются под действием возмущений. Первые порядки возмущений периода кометы вычислялись с учётом действия Венеры, Земли, Юпитера, Сатурна, Урана и Нептуна. Движение кометы удалось точно проследить до 1301 года и с меньшей точностью до 239 года до н. э. Ошибка их метода в оценке момента прохождения через перигелий для самого раннего появления достигла 1,5 года, и поэтому они использовали в статье дату 15 мая 240 года до н. э., следующую из наблюдений, а не из расчётов.

Моменты прохождения кометы Галлея через перигелий далее попытался рассчитать назад от 451 года н. э. до 622 года до н. э. русский астроном М. А. Вильев. Используя моменты прохождения Вильева на промежутке от 451 года н. э. до 622 года до н. э. и результаты Кауэлла и Кроммелина за период с 530 по 1910 год, М. М. Каменский подобрал интерполяционный ряд Фурье для орбитальных периодов. Хотя эта формула соответствовала данным, использованным для её получения, её экстраполяция за пределы области исходных данных оказывается бесполезной. Так же как и похожий анализ Ангстрема (1862) дал ошибку в предсказании прохождения через перигелий в 1910 году на 2,8 года, предсказание Каменского следующего возвращения (1986 года) ошибочно на девять месяцев. Любые попытки найти простые эмпирические формулы для определения прошлых или предсказаний будущих появлений кометы, не учитывающие динамическую модель движения кометы под действием гравитационных возмущений, не имеют смысла.

В преддверии нового появления кометы Галлея в 1986 году активизировались исследования её прошлых появлений:

  • В 1967 году Джозеф Брейди и Эдна Карпентер на основании 2000 наблюдений двух предыдущих появлений кометы Галлея определили предварительную орбиту и рассчитали, что предстоящее прохождение перигелия будет 4 февраля 1986 года (ошибка, вызванная неучётом гравитационных реактивных сил, составила около 4 дней).
  • В 1971 году те же авторы на основании около 5000 телескопических наблюдений уже четырёх предыдущих появлений смогли связать четыре этих появления численным интегрированием, учтя негравитационные силы в виде векового члена, и предсказали время прохождения перигелия в 1986 году с погрешностью около 1,5 часов. Они также впервые применили прямое численное интегрирование для исследования древних появлений кометы Галлея, используя эмпирический вековой член в уравнениях движения кометы для учёта негравитационных эффектов. Орбита кометы, вычисленная по последним четырём появлениям, была затем численно проинтегрирована назад в прошлое до 87 г. до н. э. Моменты прохождения через перигелий удовлетворительно согласовывались с данными наблюдений, приведёнными Киангом в работе 1971 года с 1682 по 218 год. Однако дальнейшее интегрирование привело к заметному расхождению, начиная с появления 141 года. В 141 году реальная комета прошла на расстоянии в 0,17 а. е. от Земли и испытала возмущение несколько отличающееся от того, что получилось в расчётах. Поскольку интегрирование не было увязано с наблюдениями ранее 1682 года, небольшое отличие между рассчитанным и реальным движением было усилено близким прохождением около Земли в 141 году. В 1982 году Брейди уточнил эти расчёты.
  • В 1971 году Тао Кианг, заново проанализировав все известные европейские и китайские прошлые наблюдения, использовал метод варьирования элементов для исследования движения кометы Галлея от 1682 года вспять до 240 г. до н. э. Учтя влияние на орбитальные элементы возмущений всех планет, Кианг смог уточнить значения моментов прохождения через перигелий и подтвердил предположение о том, что негравитационные силы отвечают за замедление среднего движения кометы чуть большее чем на 4 дня за один период обращения. Эти негравитационные силы связаны с испарением кометного вещества при прохождении около Солнца, сопровождающимся реактивной отдачей и уменьшением массы ядра.
  • В 1973 году Брайан Марсден, Зденек Секанина и Дональд Еманс разработали модель негравитационных сил, основанную на реактивном действии газов, испаряющихся с поверхности ядра кометы.
  • В 1977 году Еманс использовал эту модель для успешного описания наблюдений кометы на интервале с 1607 по 1911 год. Орбита, основанная на наблюдениях 1682, 1759 и 1835—1836 годов была проинтегрирована назад во времени вплоть до 837 года. Вследствие близкого приближения кометы к Земле в 837 году (минимальное расстояние 0,04 а. е.) ими не предпринималась попытка продолжить вычисления ранее этого времени.
  • В 1981 году Дональд Еманс и Тао Кианг на основании наблюдений 1759, 1682 и 1607 годов методом численного интегрирования рассчитали историю движения кометы Галлея в прошлое до 1404 года до н. э., вводя малые эмпирические поправки, используя очень точно определяемые из исторических хроник времена прохождения перигелия в 837, 374 и 141 годах. Кроме того, на основе наблюдений 837 года в 800 году вводилась поправка к эксцентриситету орбиты.
  • В 1984 году и в 1986 году Вернер Ландграф[de], используя первые наблюдения нового появления, проинтегрировал движение кометы на интервале с 2317 г. до н. э. по 2284 год н. э. и 467 г. до н. э. по 2580 год н. э. Для расчёта в прошлое он использовал единственную эмпирическую поправку, равную 0,03 дня для времени прохождения через перигелий в 837 году.
  • В 1988 году Гжегож Ситарский разработал метод численного интегрирования движения кометы Галлея на основании 300 лучших наблюдений, полученных с 1835 по 1987 год с единообразным использованием времён прохождения через перигелий для эмпирических поправок.

Хотя прямое численное интегрирование является единственным методом, позволяющим исследовать движение кометы Галлея за пределами интервала надёжных наблюдений, необходимо пытаться увязать интегрирование с древними наблюдениями. При проходе интегрирования через интервал сильных возмущений, обусловленных тесным сближением кометы с Землёй и другими большими планетами, требуется особенная осторожность для того, чтобы уточнить рассчитанное движение с помощью данных наблюдений. Было показано, что вследствие возмущений больших планет орбита кометы на больших отрезках времени не является устойчивой, и начальные неопределённости в определении орбиты экспоненциально нарастают со временем при расчёте в прошлое или в будущее.

Обойти это затруднение при продвижении в прошлое можно, внося небольшие поправки, опираясь на отдельные самые надёжные и точные наблюдения. Что не позволяет, однако, определить с хорошей точностью времена прохождений, далеко отстоящие от надёжных наблюдений.

Примечание[]

Advertisement